Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.059
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167043, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320662

RESUMO

Mitochondrial encephalopathy is a neurological disorder caused by impaired mitochondrial function and energy production. One of the genetic causes of this condition is the mutation of MT-TN, a gene that encodes the mitochondrial transfer RNA (tRNA) for asparagine. MT-TN mutations affect the stability and structure of the tRNA, resulting in reduced protein synthesis and complex enzymatic deficiency of the mitochondrial respiratory chain. Our patient cohort manifests with epileptic encephalopathy, ataxia, hypotonia, and bilateral basal ganglia calcification, which differs from previously reported cases. MT-TN mutation deficiency leads to decreased basal and maximal oxygen consumption rates, disrupted spare respiratory capacity, declined mitochondrial membrane potential, and impaired ATP production. Moreover, MT-TN mutations promote mitophagy, a process of selective degradation of damaged mitochondria by autophagy. Excessive mitophagy further leads to mitochondrial biogensis as a compensatory mechanism. In this study, we provided evidence of pathogenicity for two MT-TN mutations, m.5688 T > C and m.G5691A, explored the molecular mechanisms, and summarized the clinical manifestations of MT-TN mutations. Our study expanded the genotype and phenotypic spectrum and provided new insight into mt-tRNA (Asn)-associated mitochondrial encephalopathy.


Assuntos
Encefalopatias , Encefalomiopatias Mitocondriais , Mitofagia , Humanos , Mitofagia/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Encefalopatias/genética , Encefalopatias/metabolismo , RNA de Transferência/genética , RNA Mitocondrial/metabolismo
2.
Elife ; 132024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38251974

RESUMO

Chromatin-associated RNAs (caRNAs) form a relatively poorly recognized layer of the epigenome. The caRNAs reported to date are transcribed from the nuclear genome. Here, leveraging a recently developed assay for detection of caRNAs and their genomic association, we report that mitochondrial RNAs (mtRNAs) are attached to the nuclear genome and constitute a subset of caRNA, thus termed mt-caRNA. In four human cell types analyzed, mt-caRNAs preferentially attach to promoter regions. In human endothelial cells (ECs), the level of mt-caRNA-promoter attachment changes in response to environmental stress that mimics diabetes. Suppression of a non-coding mt-caRNA in ECs attenuates stress-induced nascent RNA transcription from the nuclear genome, including that of critical genes regulating cell adhesion, and abolishes stress-induced monocyte adhesion, a hallmark of dysfunctional ECs. Finally, we report increased nuclear localization of multiple mtRNAs in the ECs of human diabetic donors, suggesting many mtRNA translocate to the nucleus in a cell stress and disease-dependent manner. These data nominate mt-caRNAs as messenger molecules responsible for mitochondrial-nuclear communication and connect the immediate product of mitochondrial transcription with the transcriptional regulation of the nuclear genome.


Assuntos
Células Endoteliais , RNA , Humanos , RNA Mitocondrial/genética , Cromatina , Bioensaio
4.
Plant Physiol ; 194(3): 1593-1610, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37956067

RESUMO

Proper seed development is essential for achieving grain production, successful seed germination, and seedling establishment in maize (Zea mays). In the past few decades, pentatricopeptide repeat (PPR) proteins have been proven to play an essential role in regulating the development of maize kernels through posttranscriptional RNA modification of mitochondrial genes. However, the underlying mechanisms remain largely unknown. Here, we characterized a mutant of DEFECTIVE KERNEL 56 (DEK56) with defective kernels that exhibited arrested development of both the embryo and endosperm. Accordingly, we isolated DEK56 through a map-based cloning strategy and found that it encoded an E subgroup PPR protein located in the mitochondria. Dysfunction of DEK56 resulted in altered cytidine (C)-to-uridine (U) editing efficiency at 48 editing sites across 21 mitochondrial transcripts. Notably, the editing efficiency of the maturase-related (matR)-1124 site was substantially reduced or abolished in the dek56 mutant. Furthermore, we found that the splicing efficiency of NADH dehydrogenase subunit 4 (nad4) Introns 1 and 3 was substantially reduced in dek56 kernels, which might be a consequence of the defective MatR function. Through a protein-protein interaction test, we hypothesized that DEK56 carries out its function by recruiting the PPR-DYW protein PPR motif, coiled-coil, and DYW domain-containing protein 1 (PCW1). This interaction is facilitated by Multiple Organellar RNA Editing Factors (ZmMORFs) and Glutamine-Rich Protein 23 (ZmGRP23). Based on these findings, we developed a working model of PPR-mediated mitochondrial processing that plays an essential role in the development of maize kernels. The present study will further broaden our understanding of PPR-mediated seed development and provide a theoretical basis for maize improvement.


Assuntos
Proteínas de Plantas , Zea mays , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mitocondrial/metabolismo , Sementes/metabolismo , Endosperma/metabolismo
6.
Nucleic Acids Res ; 52(D1): D229-D238, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37843123

RESUMO

We describe the Mitochondrial and Nuclear rRNA fragment database (MINRbase), a knowledge repository aimed at facilitating the study of ribosomal RNA-derived fragments (rRFs). MINRbase provides interactive access to the profiles of 130 238 expressed rRFs arising from the four human nuclear rRNAs (18S, 5.8S, 28S, 5S), two mitochondrial rRNAs (12S, 16S) or four spacers of 45S pre-rRNA. We compiled these profiles by analyzing 11 632 datasets, including the GEUVADIS and The Cancer Genome Atlas (TCGA) repositories. MINRbase offers a user-friendly interface that lets researchers issue complex queries based on one or more criteria, such as parental rRNA identity, nucleotide sequence, rRF minimum abundance and metadata keywords (e.g. tissue type, disease). A 'summary' page for each rRF provides a granular breakdown of its expression by tissue type, disease, sex, ancestry and other variables; it also allows users to create publication-ready plots at the click of a button. MINRbase has already allowed us to generate support for three novel observations: the internal spacers of 45S are prolific producers of abundant rRFs; many abundant rRFs straddle the known boundaries of rRNAs; rRF production is regimented and depends on 'personal attributes' (sex, ancestry) and 'context' (tissue type, tissue state, disease). MINRbase is available at https://cm.jefferson.edu/MINRbase/.


Assuntos
Bases de Dados de Ácidos Nucleicos , RNA Mitocondrial , RNA Ribossômico , Humanos , Sequência de Bases , Mitocôndrias/genética , Ribossomos , RNA Mitocondrial/genética , RNA Ribossômico/genética
7.
Nucleic Acids Res ; 52(3): 1341-1358, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38113276

RESUMO

MTU1 controls intramitochondrial protein synthesis by catalyzing the 2-thiouridine modification of mitochondrial transfer RNAs (mt-tRNAs). Missense mutations in the MTU1 gene are associated with life-threatening reversible infantile hepatic failure. However, the molecular pathogenesis is not well understood. Here, we investigated 17 mutations associated with this disease, and our results showed that most disease-related mutations are partial loss-of-function mutations, with three mutations being particularly severe. Mutant MTU1 is rapidly degraded by mitochondrial caseinolytic peptidase (CLPP) through a direct interaction with its chaperone protein CLPX. Notably, knockdown of CLPP significantly increased mutant MTU1 protein expression and mt-tRNA 2-thiolation, suggesting that accelerated proteolysis of mutant MTU1 plays a role in disease pathogenesis. In addition, molecular dynamics simulations demonstrated that disease-associated mutations may lead to abnormal intermolecular interactions, thereby impairing MTU1 enzyme activity. Finally, clinical data analysis underscores a significant correlation between patient prognosis and residual 2-thiolation levels, which is partially consistent with the AlphaMissense predictions. These findings provide a comprehensive understanding of MTU1-related diseases, offering prospects for modification-based diagnostics and novel therapeutic strategies centered on targeting CLPP.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Peptídeo Hidrolases , tRNA Metiltransferases , Humanos , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Peptídeo Hidrolases/genética , Proteólise , RNA Mitocondrial/metabolismo , RNA de Transferência/metabolismo , tRNA Metiltransferases/genética , Proteínas Mitocondriais/metabolismo
8.
Methods Enzymol ; 692: 39-54, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37925186

RESUMO

The human AlkB family proteins, such as FTO and ALKBH5, are known to mediate RNA m6A demethylation. However, although ALKBH7 localizes in mitochondria and affects metabolism, the detailed biological function and mechanism have remained unknown for years. We developed Demethylation-Assisted Multiple Methylation sequencing (DAMM-seq) to simultaneously detect N1-methyladenosine (m1A), N3-methylcytidine (m3C), N1-methylguanosine (m1G) and N2,N2-dimethylguanosine (m22G) methylations in both steady-state RNA and nascent RNA, and discovered that human ALKBH7 demethylates m22G and m1A within mt-Ile and mt-Leu1 pre-tRNA regions, respectively, in mitochondrial polycistronic RNA. DAMM-seq quantitatively and sensitively monitors the methylation stoichiometry change at pre-tRNA junctions within nascent mt-RNA, revealing the target region where ALKBH7 regulates RNA processing and local structural switch of polycistronic mt-RNAs. A new RNA demethylase in human cells was characterized through the base-resolution quantification of multiple RNA methylations in nascent mt-RNA, resolving the long-standing question about the functional substrate of ALKBH7.


Assuntos
Precursores de RNA , RNA de Transferência , Humanos , Metilação , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA de Transferência/metabolismo , RNA/química , Homólogo AlkB 5 da RNA Desmetilase/química , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/química , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
9.
Anal Chem ; 95(46): 17089-17098, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37940603

RESUMO

Molecular diffusion and leakage impede the long-term retention of probes/drugs and may cause potential adverse effects in theranostic fields. Spatiotemporally manipulating the organelle-immobilization behavior of probes/drugs for prolonged tumor retention is indispensable to achieving effective cancer diagnosis and therapy. Herein, we propose a rational strategy that could realize near-infrared light-activated ribonucleic acids (RNAs) cross-linking for prolonged tumor retention and simultaneously endogenous hydrogen sulfide (H2S) monitoring in colorectal tumors. Profiting from efficient singlet oxygen (1O2) generation from Cy796 under 808 nm light irradiation, the 1O2-animated furan moiety in Cy796 could covalently cross-link with cytoplasmic RNAs via a cycloaddition reaction and realize organelle immobilization. Subsequently, specific thiolysis of Cy796 assisted with H2S resulted in homologous product Cy644 with reduced 1O2 generation yields and enhanced absolute fluorescence quantum yields (from 7.42 to 27.70%) with blue-shifted absorption and emission, which avoided the molecular oxidation fluorescence quenching effect mediated by 1O2 and validated fluorescence imaging. Furthermore, studies have demonstrated that our proposed strategy possessed adequate capacity for fluorescence imaging and endogenous H2S detection in HCT116 cells, particularly accumulated at the tumor sites, and retained long-term imaging with excellent biocompatibility. The turn-on fluorescence mode and turn-off 1O2 generation efficiency in our strategy successfully realized a diminished fluorescence cross-talk and oxidation quenching effect. It is adequately envisioned that our proposed strategy for monitoring biomarkers and prolonged tumor retention will contribute tremendous dedication in the clinical, diagnostic, and therapeutic fields.


Assuntos
Neoplasias Colorretais , Sulfeto de Hidrogênio , Humanos , RNA Mitocondrial , Corantes Fluorescentes , Neoplasias Colorretais/diagnóstico por imagem , Imagem Óptica/métodos
10.
BMC Med ; 21(1): 458, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996819

RESUMO

BACKGROUND: Circulating extracellular vesicles (EVs) are increased in preeclampsia (PE) and are associated with severity and progression. We examined in this exploratory cohort study if the mRNAs and long noncoding RNAs (lncRNAs) in plasma-derived EVs were dysregulated in PE compared to normal pregnancy and display different temporal patterns during gestation. METHODS: We isolated EVs from plasma at weeks 22-24 and 36-38 in women with and without PE (n=7 in each group) and performed RNA-seq, focusing on mRNAs and lncRNAs. We validated highly expressed mitochondrial and platelet-derived RNAs discovered from central pathways in 60 women with/without PE. We examined further one of the regulated RNAs, noncoding mitochondrially encoded tRNA alanine (MT-TA), in leukocytes and plasma to investigate its biomarker potential and association with clinical markers of PE. RESULTS: We found abundant levels of platelet-derived and mitochondrial RNAs in EVs. Expression of these RNAs were decreased and lncRNAs increased in EVs from PE compared to without PE. These findings were further validated by qPCR for mitochondrial RNAs MT-TA, MT-ND2, MT-CYB and platelet-derived RNAs PPBP, PF4, CLU in EVs. Decreased expression of mitochondrial tRNA MT-TA in leukocytes at 22-24 weeks was strongly associated with the subsequent development of PE. CONCLUSIONS: Platelet-derived and mitochondrial RNA were highly expressed in plasma EVs and were decreased in EVs isolated from women with PE compared to without PE. LncRNAs were mostly increased in PE. The MT-TA in leukocytes may be a useful biomarker for prediction and/or early detection of PE.


Assuntos
Vesículas Extracelulares , Pré-Eclâmpsia , RNA Longo não Codificante , Gravidez , Humanos , Feminino , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Pré-Eclâmpsia/genética , Estudos de Coortes , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , RNA Mensageiro/metabolismo , Biomarcadores/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
11.
Anal Chem ; 95(46): 17046-17053, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37937716

RESUMO

The transcription of the mitochondrial genome is pivotal for maintenance of mitochondrial functions, and the deregulated mitochondrial transcriptome contributes to various pathological changes. Despite substantial progress having been achieved in uncovering the transcriptional complexity of the nuclear transcriptome, many unknowns and controversies remain for the mitochondrial transcriptome, partially owing to the lack of a highly efficient mitochondrial RNA (mtRNA) sequencing and analysis approach. Here, we first comprehensively evaluated the influence of essential experimental protocols, including strand-specific library construction, two RNA enrichment strategies, and optimal rRNA depletion, on accurately profiling mitochondrial transcriptome in whole-transcriptome sequencing (WTS) data. Based on these insights, we developed a highly efficient approach specifically suitable for targeted sequencing of whole mitochondrial transcriptome, termed capture-based mtRNA seq (CAP), in which strand-specific library construction and optimal rRNA depletion were applied. Compared with WTS, CAP has a great decrease of required data volume without affecting the sensitivity and accuracy of detection. In addition, CAP also characterized the unannotated mt-tRNA transcripts whose expression levels are below the detection limits of conventional WTS. As a proof-of-concept characterization of mtRNAs, the transcription initiation sites and mtRNA cleavage ratio were accurately identified in CAP data. Moreover, CAP had very reliable performance in plasma and single-cell samples, highlighting its wide application. Altogether, the present study has established a highly efficient pipeline for targeted sequencing of mtRNAs, which may pave the way toward functional annotation of mtRNAs and mtRNA-based diagnostic and therapeutic strategies in various diseases.


Assuntos
RNA , Transcriptoma , RNA Mitocondrial/genética , RNA/genética , RNA Ribossômico/genética , RNA de Transferência/genética , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala
12.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003238

RESUMO

The mitochondrial proteome is subject to abundant post-translational modifications, including lysine acetylation and phosphorylation of serine, threonine, and tyrosine. The biological function of the majority of these protein modifications is unknown. Proteins required for the transcription and translation of mitochondrial DNA (mtDNA) are subject to modification. This suggests that reversible post-translational modifications may serve as a regulatory mechanism for mitochondrial gene transcription, akin to mechanisms controlling nuclear gene expression. We set out to determine whether acetylation or phosphorylation controls the function of mitochondrial RNA polymerase (POLRMT). Mass spectrometry was used to identify post-translational modifications on POLRMT. We analyzed three POLRMT modification sites (lysine 402, threonine 315, threonine 993) found in distinct structural regions. Amino acid point mutants that mimic the modified and unmodified forms of POLRMT were employed to measure the effect of acetylation or phosphorylation on the promoter binding ability of POLRMT in vitro. We found a slight decrease in binding affinity for the phosphomimic at threonine 315. We did not identify large changes in viability, mtDNA content, or mitochondrial transcript level upon overexpression of POLRMT modification mimics in HeLa cells. Our results suggest minimal biological impact of the POLRMT post-translational modifications studied in our system.


Assuntos
RNA Polimerases Dirigidas por DNA , Lisina , Humanos , RNA Mitocondrial/metabolismo , Lisina/metabolismo , Células HeLa , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Processamento de Proteína Pós-Traducional , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Treonina/metabolismo , Acetilação , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
13.
Nucleic Acids Res ; 51(21): 11893-11910, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37831086

RESUMO

RIG-I is a cytosolic receptor of viral RNA essential for the immune response to numerous RNA viruses. Accordingly, RIG-I must sensitively detect viral RNA yet tolerate abundant self-RNA species. The basic binding cleft and an aromatic amino acid of the RIG-I C-terminal domain(CTD) mediate high-affinity recognition of 5'triphosphorylated and 5'base-paired RNA(dsRNA). Here, we found that, while 5'unmodified hydroxyl(OH)-dsRNA demonstrated residual activation potential, 5'-monophosphate(5'p)-termini, present on most cellular RNAs, prevented RIG-I activation. Determination of CTD/dsRNA co-crystal structures and mutant activation studies revealed that the evolutionarily conserved I875 within the CTD sterically inhibits 5'p-dsRNA binding. RIG-I(I875A) was activated by both synthetic 5'p-dsRNA and endogenous long dsRNA within the polyA-rich fraction of total cellular RNA. RIG-I(I875A) specifically interacted with long, polyA-bearing, mitochondrial(mt) RNA, and depletion of mtRNA from total RNA abolished its activation. Altogether, our study demonstrates that avoidance of 5'p-RNA recognition is crucial to prevent mtRNA-triggered RIG-I-mediated autoinflammation.


Assuntos
Proteína DEAD-box 58 , Isoleucina , Receptores Imunológicos , Proteína DEAD-box 58/química , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Tolerância Imunológica , Isoleucina/genética , RNA de Cadeia Dupla/genética , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Humanos , Receptores Imunológicos/química , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
14.
Nat Cell Biol ; 25(11): 1575-1589, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770567

RESUMO

Mitochondrial oxidative phosphorylation (OXPHOS) complexes are assembled from proteins encoded by both nuclear and mitochondrial DNA. These dual-origin enzymes pose a complex gene regulatory challenge for cells requiring coordinated gene expression across organelles. To identify genes involved in dual-origin protein complex synthesis, we performed fluorescence-activated cell-sorting-based genome-wide screens analysing mutant cells with unbalanced levels of mitochondrial- and nuclear-encoded subunits of Complex IV. We identified genes involved in OXPHOS biogenesis, including two uncharacterized genes: PREPL and NME6. We found that PREPL specifically impacts Complex IV biogenesis by acting at the intersection of mitochondrial lipid metabolism and protein synthesis, whereas NME6, an uncharacterized nucleoside diphosphate kinase, controls OXPHOS biogenesis through multiple mechanisms reliant on its NDPK domain. Firstly, NME6 forms a complex with RCC1L, which together perform nucleoside diphosphate kinase activity to maintain local mitochondrial pyrimidine triphosphate levels essential for mitochondrial RNA abundance. Secondly, NME6 modulates the activity of mitoribosome regulatory complexes, altering mitoribosome assembly and mitochondrial RNA pseudouridylation. Taken together, we propose that NME6 acts as a link between compartmentalized mitochondrial metabolites and mitochondrial gene expression.


Assuntos
DNA Mitocondrial , Núcleosídeo-Difosfato Quinase , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , RNA Mitocondrial/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Regulação da Expressão Gênica , Fosforilação Oxidativa , Núcleosídeo-Difosfato Quinase/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(39): e2307722120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37725654

RESUMO

Single-cell RNA-seq (scRNA-seq) analysis of multiple samples separately can be costly and lead to batch effects. Exogenous barcodes or genome-wide RNA mutations can be used to demultiplex pooled scRNA-seq data, but they are experimentally or computationally challenging and limited in scope. Mitochondrial genomes are small but diverse, providing concise genotype information. We developed "mitoSplitter," an algorithm that demultiplexes samples using mitochondrial RNA (mtRNA) variants, and demonstrated that mtRNA variants can be used to demultiplex large-scale scRNA-seq data. Using affordable computational resources, mitoSplitter can accurately analyze 10 samples and 60,000 cells in 6 h. To avoid the batch effects from separated experiments, we applied mitoSplitter to analyze the responses of five non-small cell lung cancer cell lines to BET (Bromodomain and extraterminal) chemical degradation in a multiplexed fashion. We found the synthetic lethality of TOP2A inhibition and BET chemical degradation in BET inhibitor-resistant cells. The result indicates that mitoSplitter can accelerate the application of scRNA-seq assays in biomedical research.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , RNA Mitocondrial , Análise da Expressão Gênica de Célula Única , Mitocôndrias/genética
16.
Sci Bull (Beijing) ; 68(18): 2094-2105, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37573249

RESUMO

Methyltransferase-like 8 (METTL8) encodes a mitochondria-localized METTL8-Iso1 and a nucleolus-distributed METTL8-Iso4 isoform, which differ only in their N-terminal extension (N-extension), by mRNA alternative splicing. METTL8-Iso1 generates 3-methylcytidine at position 32 (m3C32) of mitochondrial tRNAThr and tRNASer(UCN). Whether METTL8-Iso4 is an active m3C32 methyltransferase and the role of the N-extension in mitochondrial tRNA m3C32 formation remain unclear. Here, we revealed that METTL8-Iso4 was inactive in m3C32 generation due to the lack of N-extension, which contains several absolutely conserved modification-critical residues; the counterparts were likewise essential in cytoplasmic m3C32 biogenesis by methyltransferase-like 2A (METTL2A) or budding yeasts tRNA N3-methylcytidine methyltransferase (Trm140), in vitro and in vivo. Cross-compartment/species tRNA modification assays unexpectedly found that METTL8-Iso1 efficiently introduced m3C32 to several cytoplasmic or even bacterial tRNAs in vitro. m3C32 did not influence tRNAThrN6-threonylcarbamoyladenosine (t6A) modification or aminoacylation. In addition to its interaction with mitochondrial seryl-tRNA synthetase (SARS2), we further discovered an interaction between mitochondrial threonyl-tRNA synthetase (TARS2) and METTL8-Iso1. METTL8-Iso1 substantially stimulated the aminoacylation activities of SARS2 and TARS2 in vitro, suggesting a functional connection between mitochondrial tRNA modification and charging. Altogether, our results deepen the mechanistic insights into mitochondrial m3C32 biogenesis and provide a valuable route to prepare cytoplasmic/bacterial tRNAs with only a m3C32 moiety, aiding in future efforts to investigate its effects on tRNA structure and function.


Assuntos
COVID-19 , Humanos , RNA Mitocondrial/genética , RNA de Transferência/genética , Isoformas de Proteínas , Metiltransferases/genética
17.
Nat Commun ; 14(1): 4794, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558671

RESUMO

Animal mitochondrial gene expression relies on specific interactions between nuclear-encoded aminoacyl-tRNA synthetases and mitochondria-encoded tRNAs. Their evolution involves an antagonistic interplay between strong mutation pressure on mtRNAs and selection pressure to maintain their essential function. To understand the molecular consequences of this interplay, we analyze the human mitochondrial serylation system, in which one synthetase charges two highly divergent mtRNASer isoacceptors. We present the cryo-EM structure of human mSerRS in complex with mtRNASer(UGA), and perform a structural and functional comparison with the mSerRS-mtRNASer(GCU) complex. We find that despite their common function, mtRNASer(UGA) and mtRNASer(GCU) show no constrain to converge on shared structural or sequence identity motifs for recognition by mSerRS. Instead, mSerRS evolved a bimodal readout mechanism, whereby a single protein surface recognizes degenerate identity features specific to each mtRNASer. Our results show how the mutational erosion of mtRNAs drove a remarkable innovation of intermolecular specificity rules, with multiple evolutionary pathways leading to functionally equivalent outcomes.


Assuntos
Aminoacil-tRNA Sintetases , RNA de Transferência , Animais , Humanos , RNA Mitocondrial , RNA de Transferência/genética , RNA de Transferência/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo
18.
Nat Commun ; 14(1): 4713, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543649

RESUMO

Mitochondrial RNA splicing 2 (Mrs2), a eukaryotic CorA ortholog, enables Mg2+ to permeate the inner mitochondrial membrane and plays an important role in mitochondrial metabolic function. However, the mechanism by which Mrs2 permeates Mg2+ remains unclear. Here, we report four cryo-electron microscopy (cryo-EM) reconstructions of Homo sapiens Mrs2 (hMrs2) under various conditions. All of these hMrs2 structures form symmetrical pentamers with very similar pentamer and protomer conformations. A special structural feature of Cl--bound R-ring, which consists of five Arg332 residues, was found in the hMrs2 structure. Molecular dynamics simulations and mitochondrial Mg2+ uptake assays show that the R-ring may function as a charge repulsion barrier, and Cl- may function as a ferry to jointly gate Mg2+ permeation in hMrs2. In addition, the membrane potential is likely to be the driving force for Mg2+ permeation. Our results provide insights into the channel assembly and Mg2+ permeation of hMrs2.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Humanos , Microscopia Crioeletrônica , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Splicing de RNA , RNA Mitocondrial/metabolismo
19.
Science ; 381(6661): eadg0995, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37651534

RESUMO

Plant mitochondria represent the largest group of respiring organelles on the planet. Plant mitochondrial messenger RNAs (mRNAs) lack Shine-Dalgarno-like ribosome-binding sites, so it is unknown how plant mitoribosomes recognize mRNA. We show that "mitochondrial translation factors" mTRAN1 and mTRAN2 are land plant-specific proteins, required for normal mitochondrial respiration chain biogenesis. Our studies suggest that mTRANs are noncanonical pentatricopeptide repeat (PPR)-like RNA binding proteins of the mitoribosomal "small" subunit. We identified conserved Adenosine (A)/Uridine (U)-rich motifs in the 5' regions of plant mitochondrial mRNAs. mTRAN1 binds this motif, suggesting that it is a mitoribosome homing factor to identify mRNAs. We demonstrate that mTRANs are likely required for translation of all plant mitochondrial mRNAs. Plant mitochondrial translation initiation thus appears to use a protein-mRNA interaction that is divergent from bacteria or mammalian mitochondria.


Assuntos
Mitocôndrias , Iniciação Traducional da Cadeia Peptídica , Proteínas de Plantas , RNA Mensageiro , Animais , Sítios de Ligação , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sequência Conservada
20.
Nucleic Acids Res ; 51(19): 10619-10641, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37615582

RESUMO

Complexome profiling (CP) is a powerful tool for systematic investigation of protein interactors that has been primarily applied to study the composition and dynamics of mitochondrial protein complexes. Here, we further optimized this method to extend its application to survey mitochondrial DNA- and RNA-interacting protein complexes. We established that high-resolution clear native gel electrophoresis (hrCNE) is a better alternative to preserve DNA- and RNA-protein interactions that are otherwise disrupted when samples are separated by the widely used blue native gel electrophoresis (BNE). In combination with enzymatic digestion of DNA, our CP approach improved the identification of a wide range of protein interactors of the mitochondrial gene expression system without compromising the detection of other multiprotein complexes. The utility of this approach was particularly demonstrated by analysing the complexome changes in human mitochondria with impaired gene expression after transient, chemically induced mitochondrial DNA depletion. Effects of RNase on mitochondrial protein complexes were also evaluated and discussed. Overall, our adaptations significantly improved the identification of mitochondrial DNA- and RNA-protein interactions by CP, thereby unlocking the comprehensive analysis of a near-complete mitochondrial complexome in a single experiment.


Assuntos
DNA Mitocondrial , Proteínas Mitocondriais , Proteômica , RNA Mitocondrial , Humanos , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteômica/métodos , RNA Mitocondrial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...